職稱:校聘教授 姓名 高大明
Email : gaodamingtmm@163.com
教育經(jīng)歷:
學(xué)士學(xué)位 江南大學(xué)
博士學(xué)位 京都大學(xué)(日本)
工作經(jīng)歷:
2006.07-2009.08 廣州百花香料股份有限公司
2016.04-2017.09 京都大學(xué) 研究員
2017.10-2019.05 江南大學(xué) 副教授
2019.05-2021.09 神戶大學(xué) 研究員
2022.10-現(xiàn)在 神戶大學(xué) 研究員(兼聘)
個(gè)人榮譽(yù):
江蘇省“雙創(chuàng)博士”
社會(huì)兼職(社會(huì)兼職填是否擔(dān)任過(guò)專業(yè)雜志編委、專業(yè)委員會(huì)委員、專業(yè)協(xié)會(huì)會(huì)員等)
SCI期刊Catalysts 客座編輯
第六屆國(guó)際化學(xué)工程會(huì)議 組委會(huì)委員
ACS Catalysis、ACS Sustainable Chemistry and Engineering、New Journal of Chemistry等國(guó)際期刊審稿人
研究方向:催化化學(xué)、固體催化劑合成、反應(yīng)動(dòng)力學(xué)
教學(xué)科研項(xiàng)目:
江蘇省雙創(chuàng)博士,人才項(xiàng)目,2018年~2020年,15萬(wàn)RMB,主持
公益財(cái)團(tuán)法人飯島藤十郎食品科學(xué)與技術(shù)振興會(huì)研究助成金,日本財(cái)團(tuán)資助2014年~2015年,98萬(wàn)円,主持(唯一一位獲得資助的外國(guó)人研究者)
亞臨界流體中糖異構(gòu)化的反應(yīng)機(jī)理,JSPS KAKENHI (No. 26870296; T. K. As one of collaborators),共同主持
階層性多孔ODS色譜柱的開(kāi)發(fā),日本政府-京都大學(xué)-SnG公司三方合作項(xiàng)目,主持
食品熱加工過(guò)程中典型危害物控制關(guān)鍵技術(shù)研究,廣東省重點(diǎn)研發(fā)計(jì)劃,2019年,子課題負(fù)責(zé)人
大豆纖維的改造,橫向項(xiàng)目,2018年~2019年,15萬(wàn)RMB,主持
食品安全檢測(cè)及其標(biāo)準(zhǔn)方法的研究,橫向項(xiàng)目,2018年~2018年28萬(wàn)RMB,主持
嬰幼兒米粉的制造過(guò)程的物性解析及稀少糖類的制造新技術(shù)開(kāi)發(fā),橫向項(xiàng)目,2018年~2020年,100萬(wàn)RMB,主持
新型高濃度高力価汎用性乳主原の開(kāi)発,日本株式會(huì)社サンアロマ,2020-2021,350萬(wàn)日元,橫向項(xiàng)目,主持
熱反応による高天然感キャラメル風(fēng)味油の製造技術(shù)開(kāi)発,日本株式會(huì)社サンアロマ,2020-2021,300萬(wàn)日元,橫向項(xiàng)目,主持
熱反応によるミルクチョコレート風(fēng)味油の開(kāi)発,日本株式會(huì)社サンアロマ,2020-2021,200萬(wàn)日元,橫向項(xiàng)目,主持
吸附脫附過(guò)程的分子運(yùn)動(dòng)研究,湖南華思儀器有限公司,2022年-2023年,0.2萬(wàn)RMB,橫向項(xiàng)目,主持。
發(fā)表論文
Liu, Q., Liu, H-C, Gao, D-M.* (2022). Establishing a kinetic model of biomass-derived disaccharide hydrolysis over solid acid: A case study on hierarchically porous niobium phosphate. Chem. Eng. J. 430, 132756.
Gao, D-M.*,Shen, Y-B., Zhao, B., Liu, Q., Nakanishi, K., Chen, J., Kanamori, K., Wu, H., He, Z., Zeng, M., Liu, H.-C.(2019). Macroporous niobium phosphate-supported magnesia catalysts for isomerization of glucose-to-fructose. ACS Sustain. Chem. Eng. 7 (9), 8512?8521.
Gao, D.-M.*,ZhaoB.-H.,Liu, H.-C.,Morisato, K.,Kanamori, K., He, Z.-Y., Zeng,M.-M., Wu H.-P., Chen, J., * NakanishiK.* (2018).Synthesis of a hierarchically porous niobium phosphate monolith by a sol–gel method for fructose dehydration to 5-hydroxymethylfurfral. Catal. Sci. Technol.8, 3675?3685.
Gao, D.-M., Kobayashi, T., and Adachi, S. (2015). Production of rare sugars from common sugars insubcritical aqueous ethanol. Food Chem., 175, 465–470.
Gao, D.-M., Kobayashi, T., and Adachi, S. (2015). Kinetic effect of alcohols on hexose isomerization under subcritical aqueous conditions. Chem. Eng. Res. Des., 104, 723–729.
Gao, D.-M., Kobayashi, T., and Adachi, S. (2014). Kinetics of sucrose hydrolysis in a subcritical water-ethanol mixture. J. Appl. Glycosci., 61, 9–13.
7. Gao, D.-M., Kobayashi, T., and Adachi, S. (2015). Kinetic analysis for the isomerization of glucose, fructose, and mannose in subcritical aqueous ethanol. Biosci. Biotechnol. Biochem., 79, 1–6..
8. Gao, D.-M., Kobayashi, T., and Adachi, S. (2015). Promotion or suppression of glucose isomerization in subcritical aqueous straight- and branched-chain alcohols. Biosci. Biotechnol. Biochem., 79, 470–474..
9. Gao, D.-M., Kobayashi, T., and Adachi, S. (2015). Solubility of D-galactose, D-talose, and D-tagatose in aqueous ethanol at low temperature. Food Sci. Technol. Res., 21, 801–803. .
10.Gao, D.-M., Kobayashi, T., and Adachi, S. (2016). Production of keto-disaccharides from aldo-disaccharides in subcritical aqueous ethanol. Biosci. Biotechnol. Biochem., 80, 998–1005..
11. Gao, D.-M., Kobayashi, T., and Adachi, S. (2016). Promoted isomerization of aldoses to ketoses in subcritical aqueous acetonitrile. Can. J. Chem. Eng., 95, 359?363.
12. Soisangwan, N., Gao, D.-M., et.al. (2016). Kinetic analysis for the isomerization
of cellobiose to cellobiulose in subcritical aqueous ethanol. Carbohydr. Res., 433,
67–72.
Soisangwan, N., Gao, D.-M., et.al.(2017). Production of lactulose from lactose
insubcritical aqueous ethanol. J. Food Proc. Eng., 40(2), e12413..
Jiao, Y., Yan, Y., He, Z-Y., Gao, D.-M., et.al. (2018). Inhibitory effects of
catechins on β-carbolines in tea leaves and chemical model systems. Food Funct., 9, 3126–3133.
Xue, C., He, Z., Gao, D., Qin, F., Chen, J., Zeng, M. (2018). Research progress
on heterocyclic amines in processed meat products. J. Food Safety Quality, 9(14), 3590-3597.
Yang, D-D., He, ZY., Gao, D.-M.,et.al. (2018). Effects of smoking or baking
procedures during sausage processing on the formation of heterocyclic amines measured using UPLC-MS/MS. Food Chem., 276, 195–201.DOI: doi.org/10.1016/j.foodchem.2018.09.160.
Yin, Q., Mu, H., Zeng, M., Gao, D., Qin, F., Chen, J., & He, Z. (2019). Effects of
heating on the total phenolic content, antioxidant activities and main functional components of simulated Chinese herb candy during boiling process. J. Food Measurement and Characterization, 13(1), 476-486.
Jiao,Y., Quan,W., He,Z.,Gao, D.-M., Qin,F., Zeng,M., Chen.J., (2019). Effects of
Catechins on Nε-(Carboxymethyl)lysine and Nε-(Carboxyethyl)lysine Formation in Green Tea and Model Systems. J. Agr. Food Chem., 67 (4), 1254–1260.
Jiao, Y., He, J., He, Z.,Gao, D.-M., Qin, F., Xie, M., Zeng, M., Chen, J. (2019).
Formation of Nε-(carboxymethyl) lysine and Nε-(carboxyethyl) lysine during black tea processing. Food Res. Int., 121, 738–745.
Chen,W., Liang,G., Li,X., He,Z., Zen,M.,Gao, D.-M., Qin,F., Goff,H-D., Chen, J,.
(2019). Effects of soy proteins and hydrolysates on fat globule coalescence and meltdown properties of ice cream. Food Hydrocolloid., 94, 279–286.
21. Quan, W., He,W., Lu,M., Yuan,B., Zeng,M.,Gao, D.-M., Qin,F., Chen,J., He.Z., (2019). Anthocyanin composition and storage degradation kinetics of anthocyanins-based natural food colourant from purple–fleshed sweet potato. Int. J. Food Sci. Tech. 54 (8), 2529–2539.
22. Chen, W., Liang, G., Li, X., He, Z., Zeng, M., Gao, D., Chen, J. (2019). Impact of
soy proteins, hydrolysates and monoglycerides at the oil/water interface in emulsions on interfacial properties and emulsion stability. Colloid. Surface. B: Biointerfaces, 177, 550–558.
strategy for efficient disaccharides synthesis from glucose by β-glucosidase.Bioresour. Bioprocess. (2020) 7:45.